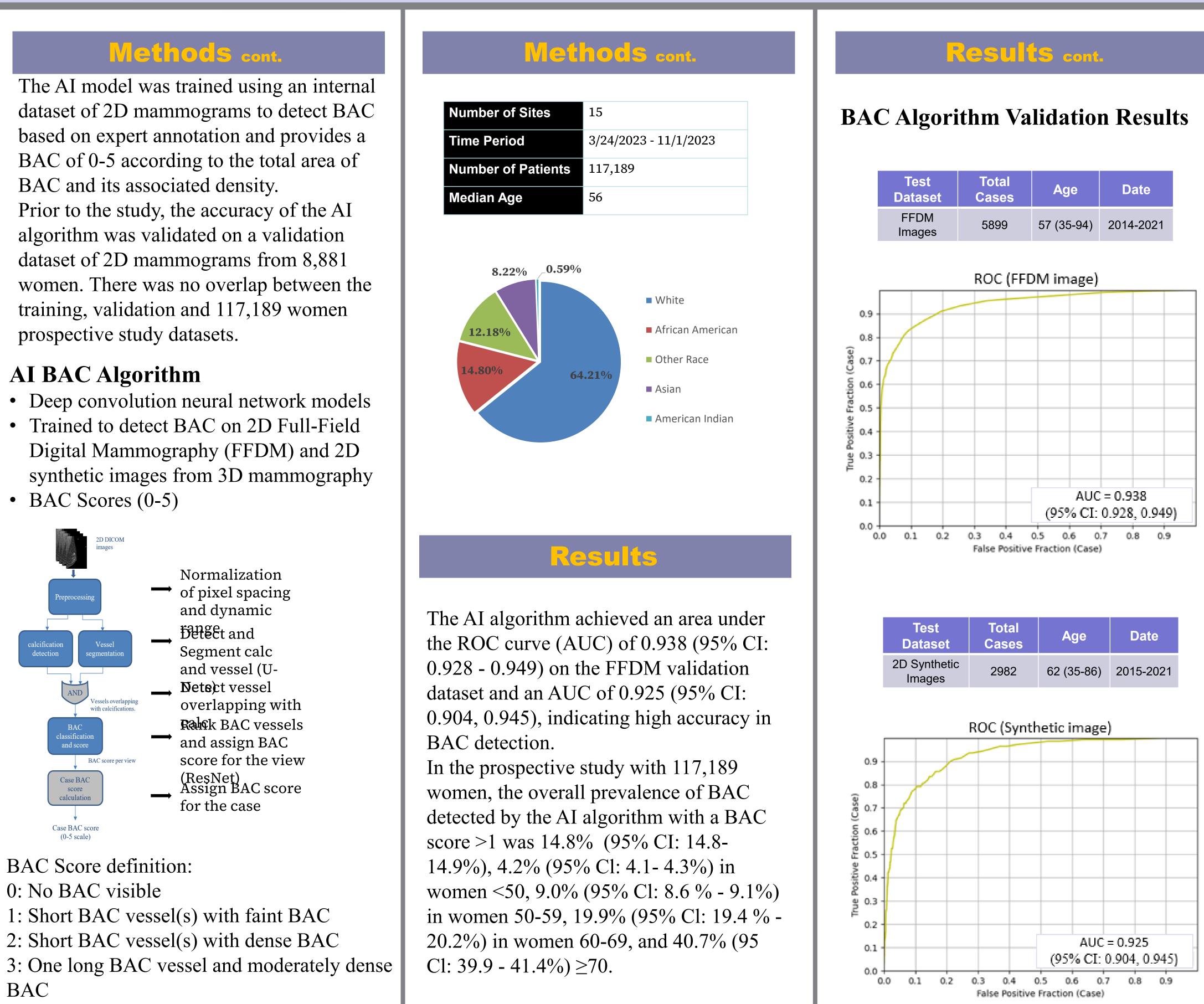
Mammography-based Breast Arterial Calcification Screening

Purpose

In this study, we present a demographic analysis of Artificial Intelligence (AI)enhanced detection of Breast Arterial Calcifications (BAC) in a large screening population across 15 sites in a prospective study and evaluate the logistics of such screening.

Background


BAC on mammography has been historically overlooked and underreported as an "incidental finding". Due to the success of mammography as a screening platform and the known gaps in cardiac screening for women, particularly young women, there has been an emerging interest in the Australian, Canadian, European and United States literature to use the presence and extent of BAC as a potential method for identifying women that may need cardiac screening for medical optimization¹⁻⁸.

Methods

Sequentially accrued 2D mammograms from 117,189 asymptomatic screening women during a 7-month period (03/24/2023 - 11/1/2023) across 15 screening sites were analyzed using a deep learning AI algorithm specifically designed for BAC detection. Age of women screened ranged from 20 to 100 years of age, with a median age of 56. The study assessed overall prevalence of BAC, as well as distribution of BAC across four age groups: <50, 50-59, 60-69, $\geq 70.$

AI BAC Algorithm

- BAC Scores (0-5)

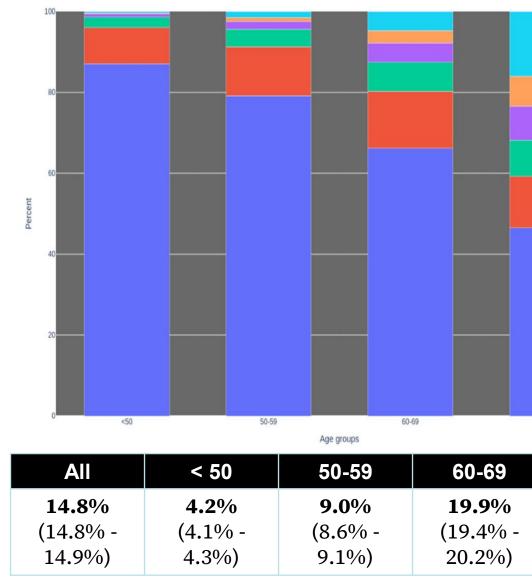
BAC Score definition:

- 0: No BAC visible

- BAC
- 4: One long BAC vessel and dense BAC
- 5: Multiple long BAC vessels and dense BAC

C.R. Parghi¹, J.W. Hoffmeister², J.Go³, W. Zhang⁴, Z. Zhang⁵, A. Sharma⁶, J. Pantleo ⁷, N. Gonzalez ⁸; ^{1,7,8}Solis Mammography, Addison, TX, ^{5,6}Einstein Medical Center, Philadelphia, PA, ^{2,3,4}iCAD, Nashua, NH, USA.

Test Dataset	Total Cases	Age	Date
FFDM Images	5899	57 (35-94)	2014-2021

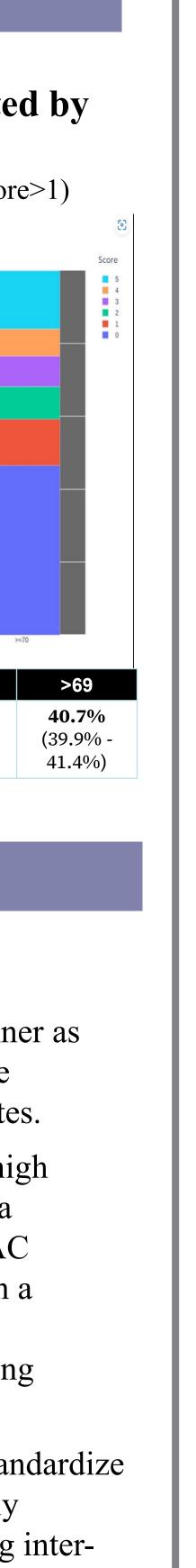

Test Dataset	Total Cases	Age	Date
2D Synthetic Images	2982	62 (35-86)	2015-2021

Results cont.

Prevalence of BAC detected by the AI Algorithm

Prevalence by age group (BAC score>1)

BAC AI score distribution per age group



Conclusion

AI based BAC screening on mammography can be performed autonomously in an accurate manner as evidenced by our results in a large screening population across 15 sites.

The AI Algorithm demonstrated high accuracy in BAC detection, with a prevalence and distribution of BAC increasing with age as expected in a screening population. The overall prevalence of BAC in our screening population was around 15%.

Our results suggest that AI can standardize BAC detection at scale, potentially improving efficiency and reducing interobserver variability.

665.

Future Work

Future work involves longitudinal tracking of patients with and without BAC to identify associated cardiovascular risk factors and standardized work-ups to guide primary care physicians in managing patients with BAC detected on screening mammography.

References

1. Lee SC, et al. Is breast arterial calcification
associated with coronary artery disease?—A
systematic review and meta-analysis. PLoS One
2020;15(7):e0236598.
2. Margolies L, et al. Digital mammography and
screening for coronary artery disease. JACC
Cardiovasc Imag 2016;9(4):350-360.
3. Hendriks EJ, et al. Breast arterial calcifications: a
systematic review and meta-analysis of their
determinants and their association with
cardiovascular events. Atherosclerosis
2015;239(1):11-20.
4. Brown AL, et al. Reporting and perceptions of
breast arterial calcification on mammography: a
survey of ACR radiologists. Acad Radiol
2022;29(Suppl 1):S192-S198.
5. Collado-Mesa F, et al. Breast arterial
calcifications on mammography: a survey of
practicing radiologists. J Breast Imag
2021;3(4):438-447.
6. Trimboli RM, et al. Breast arterial calcifications
as a biomarker of cardiovascular risk: radiologists'
awareness, reporting, and action. A survey among
the EUSOBI members. Eur Radiol 2021;31(2):958–
966.
7. Heaney RM, et al. Correlation between breast
arterial calcifications and higher cardiovascular risk:
awareness and attitudes amongst Canadian
radiologists who report mammography. Can Assoc
Radiol J 2022;74(3):582-591.
8. Nina S Vincoff, et al, Patient Notification About
Breast Arterial Calcification on Mammography:
Empowering Women With Information About
Cardiovascular Risk. J Breast Imag 2023;5(6):658-